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NOTATION

wing span, 10.40 in (34.1 ft)

wing chord measured parallel to the plane of symmetry, m (ft)

_ /" b/2 c2 dy, 2.14 m (7.04 ft)mean aerodynamic chord, S ,,o

drag coefficient (wind axes), drag
qooS

rolling-moment coefficient about stability axis,

OCl qooSb

_"7" lateral stability parameter, per deg

rolling moment

ac__2/
aileron effectiveness parameter, per deg

aCSa

lift
lift coefficient (wind axes),

qooS

OCL

_8"-_ flap effectiveness parameter, per deg

d
pitching-moment coefficient about _ (stability axes),

•,CJ_n, longitudinal stability parameter, per dog
_)o_

pitching moment

qooSd

yawing-moment coefficient

yawing moment
qooSb

about moment center shown in figure 2(a) (stability axes),

Cnb3

Clt81.

Cy

it

q

R

S

V_

aCn

a# directional stability parameter, per deg

OCn

OSr
rudder effectiveness parameter, per deg

side-force coefficient (wind axes),
side force

q_S

horizontal-tail incidence angle, deg

dynamic pressure, N/m 2 (lb/sq ft)

Vood
Reynolds number,

P

wing area, 21.50 m 2 (231.77 ft 2)

free-stream velocity, m/sec (ft/sec)
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Y

O_

#

_Sa

8e

8f

8r

8s

r7

At/4

v

spanwise distance perpendicular to tile plane of symmetry, m (ft)

angle of attack of fuselage, deg

angle of sideslip, deg; positive - nose to left

trailing-edge aileron deflection angle, deg; positive - left aileron trailing edge down

elevator deflection angle, deg; positive - trailing edge down

trailing-edge flap deflection measured from wing chord line, deg

rudder deflection angle, deg; positive - trailing edge left

spoiler deflection angle, deg

average downwash at the tail location with respect to free stream, deg

Y
wing semispan station,

sweep angle of quarter-chord line, 13°

free-stream kinematic viscosity, na2/sec (ft 2/sec)

leading-edge contours defined on figure 2(d)

Subscripts

L left

max maximum

R right

t tail

u uncorrected

A change

free stream

Hinge Moments

Positive hinge moments tend to move the control surface in the direction

deflection. The average chord aft of the hinge line was used for the reference length.

iv

of positive



Aileron

hinge moment where Sa = 0.544 m z (5.85 ft 2)
Cha = qSada da =0.38 m (1.24 ft)

Rudder

hinge moment where
Chr = qSrdr

Sr = 0.609 m 2 (6.56 ft 2)

dr = 0.46 m (1.51 ft)

Elevator

hinge moment where
Che = qSede

Se =0.635 m 2 (6.83 ft 2)

de =0.29 m (0.96 ft)

Horizontal stabilizer

hinge moment where Sh = 5.02 m2 (54.0 ft 2)
Chh- qShdh eh =l.17m(3.83ft)

Note: Se is the area of the right or left elevator; Sh is the total area of the horizontal stabilizer.
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SUMMARY

The aerodynamic characteristics of a full-scale executive type jet transport aircraft with a

T-tail were investigated in the Ames 40- by 80-Foot (12.2- by 24.4-m) Wind Tunnel (subsonic).

Static longitudinal and lateral stability and control characteristics were determined at angles of
attack from -2 ° to +42 ° .

The aircraft wing had 13° of sweep and an aspect ratio of 5.02. The aircraft was tested power

off with various wing leading- and trailing-edge high-lift devices. The basic configuration was tested

with and without such components as engine nacelles, wing tip tanks, and empennage.

Hinge-moment data were obtained and downwash angles in the horizontal-tail plane location were

calculated. The data were obtained at Reynolds numbers of 4.1XI06 and 8.7X106 based on wing

mean aerodynamic chord.

The model had static longitudinal stability through initial stall. Severe tail buffet occurred near

the angle of attack for maximum lift. Above initial stall the aircraft had pronounced pitch-up,
characteristics of T-tail configurations. A stable trim point was possible at angles of attack between

30 ° and 40 ° (depending on c.g. location and flap setting).

Hinge-moment data showed no regions that would result in adverse effects on stick force.
Comparisons of wind-tunnel data and flight-test data are presented.

INTRODUCTION

Most small aircraft, including executive jet transports, are designed with a minimum of

wind-tunnel data. Furthermore, flight tests are likely to be qualitative rather than quantitative. As a

result, the designer has little opportunity to verify his design predictions.

Therefore, to aid designers the present investigation was conducted to determine the static

longitudinal and lateral stability and control characteristics through deep stall of a full-scale
executive jet aircraft. The deep stall testing was conducted to see if the aircraft exhibited

unfavorable characteristics at high angles of attack because of its T-tail. Some of these problems and



relatedresearchcanbe found in references1 through4. Unfortunately,it cannotbedetermined
from wind-tunneltestsof unpoweredaircraft whetherthe poweredaircraftcanbecomelockedin
deepstall.

AIRCRAFT AND APPARATUS

In figuresl(a) and (b) the model is shownmountedin theAmes40-by 80-Foot(12.2-by
24.4-m) Wind Tunnel. Pertinent dimensionsof the basic model configurationsare given in
figures2(a)and(b).

Wing

Thewinghadaquarterchordsweepof 13°, an aspect ratio of 5.02, a taper ratio of 0.507, and

a dihedral angle of 2.5 °. The airfoil section was an NACA 64A 109 modified by increased camber

and chord at the leading edge (fig. 2(d)) which was minimum at the root and maximum at the

wing-tip tank junction.

High Lift Devices

Flap details- The basic wing had a single slotted, extendable (Fowler) flap (fig. 2(c)) located

from the edge of the fuselage at 7.1 percent to 61.2 percent r/. Maximum flap angle was 40 ° at the

lower Reynolds number and 38 ° at the higher Reynolds number because of air load effects. A

center section flap that extended under the fuselage was tested (fig. l(b)). There were no gaps
between the sides of the center section flap and the main flaps.

Leading-edge contours- The drooped leading edges of the basic wing were removed, part way

through the test, and replaced by various leading-edge contours (fig. 2(d)). The dimensions of the

leading edges varied linearly from root to tip.

Wing plan form modification- In an attempt to delay the stalling of the wing tip region, fence,

were placed first on the tops and then on the sides of the tip tanks (fig. 2(e)).

Lateral Controls

Ailerons- The ailerons (fig. 2(b)) had relatively blunt leading edges and balance tabs to
decrease stick force. As the ailerons were moved, the balance tabs moved in the opposite direction

such that

e_tab = -(5/6)6a

where C_tab is the tab angle relative to the aileron chord and 6a is the aileron angle relative to the

wing chord.
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Spoilers- The chords of the spoilers were 10.25 percent of the wing chord at midspoiler and
were located from 22.2 percent to 49.4 percent semispan (see fig. 2(b)). Spoiler angles ranged from

0° to 42 °. In addition to the basic wing spoilers, dummy spoilers were tested outboard (fig. 2(f)).

Tail

The geometry of the horizontal and vertical tails is described in figure 2(g). Pitch control was

provided by an all-movable tail that had an available deflection range of 0.4 ° to -7.0 ° and by a

32 percent chord elevator with balance horn. The elevator angle was variable from 15° to -15 °. The
rudder (25 percent chord) had a deflection range of 30 ° to-30 ° and had a trim tab that was locked
at 0 °. The horizontal stabilizer was used for aircraft trim.

Nacelles

Engine nacelle detail and location are shown in figure 2(h). A constant-area circular duct was

installed in each nacelle to allow mass flow conditions of 4.81 kg/sec (10.6 lb/sec) of air at standard

conditions, similar to that of the jet engines for idle airflow at a Mach number of 0.2. Static and
total pressures were measured with rakes at the aft ends of the ducts to determine the actual

dynamic pressure of the nacelle flow and the internal naceIle drag (which was removed from the

data). The nacelles were removed from the pylons during a part of the test.

Tip Tanks

Wing tip tank detail and location are shown in figure 2(b). All data are presented with the tip
tanks on unless stated otherwise.

TESTING AND PROCEDURE

Forces and moments were measured for the model through an angle-of-attack range from -2 °

to 42 °. Pitching-moment data were computed about a moment center location at 25 percent & The

center-of-gravity range for this aircraft is 16 percent C to 31.5 percent _, Tests were conducted at
Reynolds numbers of 4.1×106 and 8.7X10 6 based on a mean aerodynamic chord of 2.14 m

(7.04 ft) and speeds of 27.8 m/see (54.2 knots) and 59.0 m/sec (115.0 knots), respectively. These

speeds correspond to dynamic pressures of 478.8 N/m s (q = 10 psf) and 2156 N/m 2 (q = 45 psf).

Tests were conducted with the basic configuration _ at several tail incidences with variable

elevator, rudder, aileron, spoiler, and flap settings. Data were also obtained with landing gear down.

The maximum angle of attack at R=8.7×106 was 16 ° (tail on) because of tail buffet load

limitations. Most data, tail on, at angles of attack higher than 16° were taken at a Reynolds number
of4.1×106 .

_Basic configuration refers to the airplane as shown in figure l(a) with engine nacelles, tip tanks, and
empennage on model. Control surfaces were at zero angle unless stated otherwise.



DATA ACQUISITIONAND REDUCTION

Forcesandmomentsweremeasuredon thewind-tunnelsix-componentbalance.Torquetubes
in theelevatorsandrudderweregagedto providehinge-momentdata.

All datawerecorrectedfor strut tares, nacelle internal flow drag, and wind-tunnel wall effects.

Nacelle internal flow drag was calculated from pressure measurements in the nacelle ducts, and

AC D = 0.0005 cos a was subtracted from model drag. Corrections added for wind-tunnel wall
effects were

Ac_= 0.506 CLu

AC D = 0.0088 CLu 2

ACm = 0.0171 CLu (tail on runs only)

ACCURACY OF MEASUREMENT

The various quantities measured were accurate within the following limits, which include error

limits involved in calibrating, reading, and reducing the data.

Angle of attack

Angle of sideslip

Free-stream dynamic pressure

Control surface settings

_+0.2°

+0.5 °

-+0.5 percent
-+0.5°

Force or moment

Coefficients at

R = 8.7×10 6

Lift +22.4 N (+5 lb) +0.0005

Drag -+13.4 N (+3 lb) _+.0003
Side force _+13.4 N (+3 lb) +.0003

Pitching moment +271 J (+200 ft-lb) -+.0027
Yawing moment -+136 J (_+100 ft-lb) +.0003

Rolling moment --.475 J (+350 ft-lb) _+.0010

RESULTS

Table 1 is the index to the figures. The longitudinal data are presented in figures 3 to 18 and
the lateral data in figures 19 to 30. Downwash and hinge-moment data are given in figures 31 and

32, respectively.
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DISCUSSION

LongitudinalCharacteristics

Flap effectiveness- The longitudinal characteristics of the basic airplane at R = 8.7×106 with

three flap settings are shown in figure 3(a). The flap effectiveness parameter, CL6, was 0.015/deg
for the 20 ° flap setting and 0.013/deg for the 38 ° flap setting. A theoretical flap effectiveness

estimate was made using the simplified lifting-surface theory of reference 5, which gave the value of

CL6 as 0.022/deg, almost 60 percent higher than measured. This discrepancy was probably due to a

nonoptimum gap setting for the single-slotted, Fowler type flaps. A comparison of small-scale with
full-scale wind-tunnel data to be discussed in a later section shows that small-scale flap effectiveness

is closer to the theoretical value. This suggests that the flap gap choice was based on small-scale test
data and not corrected properly for full-scale Reynolds number effects.

Maximum lift- Figure 3(a) shows the basic stall characteristics of the aircraft at R = 8.7× 106 .

Because of severe buffet on the tail as it penetrated the wing wake, the tail was guy-wired as shown

in figure l(a). 2 In addition, some of the data were taken at a reduced Reynolds number of

4.1×106. The tail buffet acted as a strong stall warning. Figure 3(b) shows the longitudinal

characteristics at R = 4.1X 106 . Increasing the Reynolds number from 4.1 × 106 to 8.7× 106 caused

an increase in maximum lift coefficient of 0.19 (flaps down) and 0.20 (flaps up) as shown in

figure 4. The high Reynolds number condition is closer to actual flight conditions. Observation of

tufts on the left wing indicated that a region of separated flow developed near the wing leading edge
tip tank junction at 8 ° angle of attack (this did not happen with tip tanks off). As angle of attack

was increased the region of separated flow spread aft and inboard. Near CLmax the wing root began

to stall. Both regions grew with angle of attack until most of the wing stalled and lift dropped.

Static stability- A study of the variation of the stick-fixed pitching-moment coefficient with

angle of attack (fig. 5(a)) shows that the airplane was stable through maximum lift (even for aft c.g.

limit of 31.5 percent e). Above maximum lift, the classic deep stall situation occurred that will be

discussed later. The data presented for c.g. at 25 percent d give Cma = -0.0186/deg. At stall the

aircraft experienced a slight nose down pitching moment. The stick-free static stability

characteristics, determined from hinge-moment and pitching-moment curves, are shown in

figure 5(b) (data are shown for c.g. at 25 percent d). Freeing the elevator reduced the stability, but

the aircraft did not become unstable. For the aft c.g. case (31.5 percent d), 6 f = 0°, o_= 0 °, Cmo_ was
reduced from -0.0185 to -0.005/deg.

Deep stall- As illustrated in figure 6, the airplane was unstable above maximum lift

(stick-fixed) with the center of gravity at the quarter chord, and maximum nose-down trim until an

angle of attack of 32 ° was reached at which point static stability was again attained. Furthermore,

the pitching moments became zero or slightly positive above a = 28 ° flaps down. Thus it may be

possible (at Iow Reynolds number) for the airplane to reach a region of positive pitching moment

and pitch up to e_= 32 °, a trim condition (power off) if the pilot does not take corrective action.

However, aircraft rolloff may preclude this possibility, as will be discussed in a later section. As

shown by the axes superimposed on figure 6(b), at forward c.g. the pitching moments do not
become positive, but at the aft c.g. the aircraft would reach the positive pitching-moment region

2The wires had very little effect on the data.



soonerand could pitch up to trim at o_= 39 ° (flaps up or down) while completely stalled.

Figure 6(c) shows that while the effect of sideslip was beneficial, 8 ° of sideslip changed the pitching

moment only 0.06 at c_= 32 ° .

With the flaps up, elevator effectiveness was maintained at all angles of attack but

pitching-moment increment due to full elevator deflection at angles of attack greater than 24 ° is

approximately one fourth that at angles of attack below stall (see fig. 7(a)). Therefore, recovery

from deep stall (flaps up, c.g. at 25 percent 6) would be possible using the elevator, but the time it
takes to rotate the nose down may be long. With the c.g. in the aft location there is insufficient

elevator effectiveness to recover from deep stall. With the flaps full down (fig. 7(b)) there was an

almost complete loss of elevator control power above o_= 24 °. Since the data (flaps up and down)

were taken with the horizontal stabilizer leading edge full up, any movement of that control surface

would only make the pitching moments more positive.

Figures 8 and 9 illustrate the effects of horizontal stabilizer incidence and removal of the

empennage, respectively, on the longitudinal characteristics.

Effect of wing tip tanks, engine nacelles, and landing gear- Figure I0 shows that the wing tip

tanks caused an increase in lift coefficient and lift curve slope primarily because of the increased

wing area and aspect ratio (reference area was not changed). The drag change was small tip to

CLmax. The addition of the tip tanks made the aircraft slightly more stable in pitch.

The engine nacelles caused a decrease in lift, especially with flaps down (fig. 1 1). This decrease
was probably due to interference with flow around the wing that redtlced wing lift since the nacelles

did not develop negative lift or reduce tail lift. This explanation is substantiated by the increase in
nose-down pitching moment with the nacelles on the aircraft. If the nacelles had developed negative

lift or if the tail lift had been reduced, the pitching-moment change would have been nose up. The

fact that the wing tips were probably not affected by the nacelles accounts for the nose-down
pitching-moment change (i.e., the lift loss was inboard).

The landing gear effect on the longitudinal characteristics is small (fig. 12).

High-lift devices- The effects of four wing leading edges are given in figures 13(a) and (b), flaps

up and down. For the flap down case the leading edge 14, which had the greatest droop, increased

maximum lift beyond the value achieved by l 3 , the basic configuration leading edge.

In an attempt to improve the CLmax of the airplane, fences were placed on the tops and,

later, sides of the tip tanks to alleviate flow separation at the junction of the tip tank and wing.

Fences on the sides of the tip tanks caused an increase in lift due to the increased wing area and
aspect ratio (fig. 14). In no case was the flow separation alleviated near the tip.

The center body flap (fig. l(b)) caused a very small reduction in lift and drag of the model and

a very slight change in pitching moment (fig. 15). The reason for the reduction in lift and drag is
unknown.

Drooping the ailerons 13.7 ° increased maximum lift coefficient by 0.1 (fig. 16). Since
drooped ailerons reduce roll control, outboard spoilers were tested. These will be discussed in the
lateral control section.

6



EfJ_,ct of spoilers- Runs were made with various right and left spoiler deflections (see
figs. 17(a) and (b)). The deflection of one or both spoilers 42 ° caused a nose-down

pitching-moment change probably because of an induced increase of tail angle of attack. This

supposition checks with figure 17(c) that shows very little change in pitching moment with

outboard spoiler deflection. It was expected that the flow field of the tail would not be affected

greatly by deflection of the outboard spoilers. The drag was increased 80 percent with full spoiler
deflection.

Comparison of wind-tunnel and flight-test data- A comparison of Ames 40- by 80-Foot (12.2-

by 24.4-m) Wind Tunnel data, Wichita State University 7-by 10-Foot (2.1-by 3.l-m)Wind Tunnel

data and Lear Jet Flight-test data is made in reference 6. Two figures from that paper are presented
in this report as figures 18(a) and (b). Results show good agreement between full-scale wind-tunnel

and flight-test data. Reynolds number effects account for most of the difference between
small-scale and full-scale results.

Lateral and Directional Stability and Control

The lateral characteristics of the airplane are shown in figures 19 to 23, and lateral and

directional control effectiveness in figures 24 to 29. Stability derivatives Cn/3 and C//3 are plotted

versus angle of attack in figure 30. These data show that the airplane had positive effective dihedral

(-CI/3) over the normal operating range and was directionally stable statically (positive Cn/3). With
the tail removed (fig. 22) the nonzero rolling moment and side force at/3 = 0 ° were probably due to

flap misalinement. The flaps had been removed and reinstalled on the model prior to these runs.

The data in figure 23 show that as the model stalled with flaps up, it tried to roll left (left wind

down) and with flaps down, it tried to roll right (right wing down). The change in roll direction at
stall was probably caused by asymmetric deflection of the flaps. The rolling moment, flaps down,
was greater than that produced by full opposite aileron deflection. This severe rolloff in stall would

complicate recovery, but it might prevent a deep stall condition.

Control effectiveness- Aileron roll power was fairly constant below stall but decreased rapidly
in stall (fig. 24). The airplane had slight favorable yaw due to aileron above 6 ° angle of attack.

Figures 24(b) (d) show the control power due to one aileron. The nonzero side force was probably

due to model misalinement in the test section. Figure 25 is a summary plot of C16a versus angle ofattack.

Rudder deflection affected the longitudinal characteristics very little. Figure 26 shows the

lateral effects of rudder deflection. The rudder was capable of holding the airplane in sideslip
between-15 ° --.</3_< 15°.

The control power of the basic spoiler is shown in figure 28(a) as plots of Cy, Cn, and C l
versus left spoiler angle (right spoiler full down). Figure 28(b) shows the effectiveness of dummy
outboard spoilers S_, $2, and $3. These spoilers were more effective than ailerons or inboard

spoilers for lateral control. The lateral characteristics of the airplane with the landing gear extended
are shown in figure 29. Comparison with the results in figure 19(a) (landing gear retracted) indicates

that the landing gear had a small effect on Cy vs./3 but only a slight effect on Cn and C l vs./3.



! \

!

Downwash at the Horizontal Tail

An average downwash angle at the horizontal stabilizer was estimated from curves of Cm vs. ot

for several tail incidence angles. The intersection of the tail-on curves with the tail-off curve are
points where tail lift is zero; and for a symmetrical horizontal stabilizer

e=o_+i t

Figure 31 shows the results of the above calculation, which were identical for both Reynolds
number cases.

Hinge Moments

Typical curves of hinge-moment coefficient C h versus angle of attack and Ch versus control
position are presented in figures 32(a)-(h) for aileron, elevator, rudder, and horizontal stabilizer.

The data were obtained at R = 8.7X 106 to approximate actual flight conditions. These results show

no control force reversal for any of the controls within the normal operating range.

CONCLUSIONS

A full-scale wind-tunnel investigation was made of a small jet aircraft with a T-tail to

determine the longitudinal and lateral stability and control characteristics through deep stall, power
off. The following conclusions were drawn from the results of the investigation:

I. The airplane had stick-fixed static longitudinal stability at angles of attack up to stall for

the full c.g. range. With the stick free, stability was reduced but the aircraft did not become
unstable.

2. Before stall the tail experienced severe buffet as it penetrated the wing wake, and, in stall,

the airplane tended to roll right wing down or left wing down depending on flap angle. The tail
buffet acted as a strong stall warning, that might prevent deep stall entry during actual flight

conditions. However, the rolling moment in stall, flaps down, was greater than that produced by full

opposite aileron deflection.

3. Above stall, the airplane was unstable in pitch, and the pitching moments could become

positive, depending on c.g. A trim condition in deep stall (a = 39 °) with a large reduction in elevator

control was possible. With the c.g. in the aft position, elevator control and horizontal stabilizer

control were insufficient for recovery from deep stall trim.

4. The airplane was directionally stable, below stall, and had positive effective dihedral.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 6, 1971
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(b) Center section flap, nose and tip booms on model.

Figure 1.- Concluded.
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